If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-5=55
We move all terms to the left:
3t^2-5-(55)=0
We add all the numbers together, and all the variables
3t^2-60=0
a = 3; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·3·(-60)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*3}=\frac{0-12\sqrt{5}}{6} =-\frac{12\sqrt{5}}{6} =-2\sqrt{5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*3}=\frac{0+12\sqrt{5}}{6} =\frac{12\sqrt{5}}{6} =2\sqrt{5} $
| 8x-3(x-1)=6x+10 | | -3(7c-6)=-26 | | 9a-(-72)=0;-8 | | -38-(-40)=x/6 | | .75x+50=1.25x | | 5x2+7x-66=0 | | 3(12+12n)=6(10n+6) | | -8x-12=-x=23 | | 12x+7=6x+5 | | -4x+5=x+95 | | 18-8t=17-12t+1 | | 14x-4+75=2x-1 | | -5a+54=5(-4a+13.89 | | 2y-8+3(2y+4)=-2(y+5) | | -1/7=-7/3k | | 5(5a+1)=89+39 | | 7/15x=14/15 | | 3(y+8)=7 | | y/6-2=6 | | 1/2+x=2+3/4 | | 6x4x25=6x | | -0.03n=12 | | 9x-20=4(x+5) | | -9,94-6.1b=3.29-6b-12.74 | | 15-7n=3-n | | 7x=(7/6)+2 | | 4-2/3(h+8)=3h-4 | | 2x+3=7;4 | | -2=12y-5(2y-7) | | -5(1+3d)=-31 | | 43-x=19 | | -10y+18=3(-5y-7)+5y |